Model Answers

Question 1 - solution

a = lattice constant

r = radius of gold atom = 0.1442 nm

$$(4r)^2=a^2+a^2 \Leftrightarrow 16r^2=2a^2 \Leftrightarrow 8r^2=a^2 \Leftrightarrow a=\sqrt{8}r$$

$$r\approx 0.1442 \ nm$$

$$a=\sqrt{8}r=\sqrt{8}r\approx \sqrt{8}\times 0.1442\approx 0.4079 \ nm$$

Question 2 – solution

The shell thickness is half of the lattice parameter, and 0.2039 nm.

The total volume of the nanoparticle of radius R is:

$$V_{total} = \frac{4}{3}\pi R^3$$

The volume of the core after accounting for the finite shell thickness is:

$$V_{\rm core} = \frac{4}{3}\pi(R - 0.2039)^3$$

The volume of the shell is the difference between the total volume and the volume of the core, i.e.:

$$V_{sheel} = V_{total} - V_{core} = \frac{4}{3}\pi R^3 - \frac{4}{3}\pi (R - 0.2039)^3$$

Now since the lattice constant of the Au unit cell is 0.4079 nm the volume of a single unit cell is:

$$V_{unit} = 0.4079R^3$$

The number of unit cells making up the shell can be calculated from:

$$Unit cells_{sheel} = \frac{V_{sheel}}{V_{unit}}$$

Since the number of atoms per unit cell is 4, the total number of surface atoms is:

$$Atoms_{surface} = 4 \times Unit cells_{sheel}$$

To calculate the total number of atoms in the entire particle, first it is necessary to find the total number of unit cells.

Unit cells_{total} =
$$\frac{V_{total}}{V_{unit}}$$

The number of atoms per unit cell is 4 giving the total number of atoms in the particle:

$$Atoms_{total} = 4 \times Unit cells_{total}$$

Thus, the fraction of surface atoms is:

$$f = \frac{Atoms_{surface}}{Atoms_{total}}$$

For a 10 nm gold nanoparticle:

$$V_{\text{total}} = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi (5)^3 \approx 523.6 \text{ nm}^3$$

$$V_{\text{core}} = \frac{4}{3}\pi(5 - 0.2039)^3 \approx 462.1 \text{ nm}^3$$

$$V_{\rm sheel} = V_{\rm total} - V_{\rm core} = 523.6 - 462.1 = 61.5 \ nm^3$$

$$V_{unit} = 0.4079^3 \approx 0.068 \text{ nm}^3$$

Unit cells_{sheel} =
$$\frac{V_{sheel}}{V_{unit}} = \frac{61.5}{0.068} \approx 904$$

 $Atoms_{surface} = 4 \times Unit cells_{sheel} = 4 \times 904 = 3616$

Unit cells_{total} =
$$\frac{V_{total}}{V_{unit}} = \frac{523.6}{0.068} = 7700$$

 $Atoms_{total} = 4 \times Unit cells_{total} = 4 \times 7700 = 30800$

$$f = \frac{Atoms_{surface}}{Atoms_{total}} = \frac{3616}{30800} \approx 0.12$$

For a 2 nm gold nanoparticle:

$$V_{total} = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi (1)^3 \approx 4.2 \text{ nm}^3$$

$$V_{\text{core}} = \frac{4}{3}\pi(1 - 0.2039)^3 \approx 2.1 \text{ nm}^3$$

$$V_{sheel} = V_{total} - V_{core} = 4.2 - 2.1 = 2.1 \ nm^3$$

$$V_{unit} = 0.4079^3 \approx 0.068 \text{ nm}^3$$

$$Unit cells_{sheel} = \frac{V_{sheel}}{V_{unit}} = \frac{2.1}{0.068} \approx 31$$

$$Atoms_{surface} = 4 \times Unit cells_{sheel} = 4 \times 31 = 124$$

Unit cells_{total} =
$$\frac{V_{total}}{V_{unit}} = \frac{4.2}{0.068} = 62$$

$$Atoms_{total} = 4 \times Unit cells_{total} = 4 \times 62 = 248$$

$$f = \frac{Atoms_{surface}}{Atoms_{total}} = \frac{124}{248} \approx 0.50$$

Question 3 – solution

The surface area of a 15 nm gold nanoparticle is:

$$S_{sphere} = S_{15 \text{ nm nanosphere}} = 4\pi R^2 = 4\pi (7.5)^2 \approx 706.9 \text{ nm}^2$$

Thus, the number of PEG-SH molecules necessary to create a monolayer in a 15 nm gold nanosphere, $N_{SH\ 15\ nm\ nanosphere}$, is given by:

$$N_{SH \, 15 \, nm \, nanosphere} = \frac{S_{15 \, nm \, nanosphere}}{Footprint_{PEG-SH}} = \frac{706.9}{0.35} = 2020$$

The surface area of a 45×15 nm gold nanorod is:

$$\begin{split} S_{45\times15\;\text{nm gold nanorod}} &= S_{\text{lateral of cilinder}} + S_{\text{sphere}} = 2\pi R h + 4\pi R^2 \\ &= 2\pi\times7.5\times(45-15) + 4\pi(7.5)^2 \approx 2120.6\;\text{nm}^2 \end{split}$$

Thus, the number of PEG-SH molecules necessary to create a monolayer in a 45×15 nm gold nanorod, $N_{SH~45\times15~nm~nanorod}$, is given by:

$$N_{SH \, 45 \times 15 \text{ nm gold nanorod}} = \frac{S_{45 \times 15 \text{ nm gold nanorod}}}{Footprint_{PEG-SH}} = \frac{2120.6}{0.35} = 6059$$